organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-Pivaloyl-3-(pyrimidin-2-yl)thiourea

Sarwat Sultana,^a M. Khawar Rauf,^b Masahiro Ebihara^b and Amin Badshah^a*

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ^bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan

Correspondence e-mail: aminbadshah@yahoo.com

Received 18 April 2007; accepted 19 April 2007

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.004 Å; R factor = 0.059; wR factor = 0.118; data-to-parameter ratio = 17.1.

There are two molecules in the asymmetric unit of the title compound, C₁₀H₁₄N₄OS. Both the thiocarbonyl and carbonyl groups are *cis* with respect to the C-N thiourea bond. Both intra- and intermolecular N-H···N hydrogen bonds stabilize the packing arrangement.

Related literature

For related literature, see: Allen (2002); Khawar Rauf, Badshah & Flörke (2006); Shoukat et al. (2007).

Experimental

Crystal data

C10H14N4OS $M_r = 238.31$ Triclinic, $P\overline{1}$ a = 5.652 (3) Åb = 11.674 (8) Å c = 18.585 (12) Å $\alpha = 106.915 \ (9)^{\circ}$ $\beta = 92.642 \ (6)^{\circ}$

 $\nu = 94.478 \ (8)^{\circ}$ $V = 1166.6 (13) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.26 \text{ mm}^{-1}$ T = 113 (2) K $0.45 \times 0.36 \times 0.20 \text{ mm}$

Data collection

Rigaku/MSC Mercury CCD diffractometer Absorption correction: none 9547 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.118$	independent and constrained
S = 1.10	refinement
5309 reflections	$\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^{-3}$
311 parameters	$\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

5309 independent reflections

 $R_{\rm int} = 0.034$

4314 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$N1 - H1 \cdots N4^{i}$ $N2 - H2 \cdots N3$ $N5 - H5 \cdots N8^{ii}$ $N6 - H6 \cdots N7$	0.86 (3) 0.85 (3) 0.85 (3) 0.86 (3)	2.27 (3) 1.90 (3) 2.28 (3) 1.88 (3)	3.133 (3) 2.642 (3) 3.122 (3) 2.632 (3)	174 (3) 144 (3) 171 (2) 144 (3)

Symmetry codes: (i) -x, -y + 1, -z; (ii) -x + 1, -y, -z + 1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

MKR is grateful to the HEC-Pakistan for financial support under IRSIP Program for a Pre-doctoral Fellowship at Gifu University, Japan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2229).

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Khawar Rauf, M., Badshah, A. & Flörke, U. (2006). Acta Cryst. E62, o3823-03825.
- Molecular Structure Corporation & Rigaku (2001). Crystal Clear. Version 1.3. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2004). TEXSAN. Version 2.0. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Shoukat, N., Khawar Rauf, M., Bolte, M. & Badshah, A. (2007). Acta Cryst. E63, o920-o922.

Acta Cryst. (2007). E63, o2674 [doi:10.1107/S1600536807019459]

1-Pivaloyl-3-(pyrimidin-2-yl)thiourea

S. Sultana, M. Khawar Rauf, M. Ebihara and A. Badshah

Comment

The background to this study has been set out in our previous work for the structural chemistry of *N*,*N*-disubstituted thioureas (Shoukat *et al.*, 2007). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles, see the selected geometric parameters table, can be regarded as typical for *N*,*N*'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf *et al.*, 2006). The molecule exists in its thione form with typical thiourea C—S and C—O bond distances, as well as shortened C—N bonds (See geometric parameters table). The planes containing the S1, O1, N1, N2, C1 & C2 and S2, O2, N5, N6, C11 & C12 atoms are almost parallel to the pyrimidine ring, forming dihedral angles of 9.54 (13)° and 12.92 (12)° respectively. The molecules also feature intra & intermolecular N—H···N hydrogen bonds (See hydrogen-bond geometry table and Fig 2).

Experimental

Freshly prepared pivaloylisothiocyanate (1.43 g, 10 mmol) in acetone (30 ml) was stirred for 30 minutes. Neat 2aminopyrimidine (1.0 g, 10 mmol) was then added and the resulting mixture was stirred for 1 h. The reaction mixture was poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/ chloroform (1:5 v/v) to give fine crystals of (I), with an overall yield of 80%.

Refinement

C-bound H atoms were included in the riding model approximation with C—H 0.95–0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$ or $U_{iso}(H) = 1.5 U_{eq}(C_{methyl})$. The N-bound H atoms were refined isotropically.

Figures

Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Thermal displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Hydrogen-bonded dimer structures of (I) viewed along the *c*-axis. The hydrogen bonds are shown as dashed lines.

1-Pivaloyl-3-(pyrimidin-2-yl)thiourea

Crystal data	
C ₁₀ H ₁₄ N ₄ OS	Z = 4
$M_r = 238.31$	$F_{000} = 504$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.357 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
a = 5.652 (3) Å	Cell parameters from 3112 reflections
b = 11.674 (8) Å	$\theta = 3.3 - 27.5^{\circ}$
c = 18.585 (12) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 106.915 \ (9)^{\circ}$	T = 113 (2) K
$\beta = 92.642 \ (6)^{\circ}$	Block, yellow
$\gamma = 94.478 \ (8)^{\circ}$	$0.45 \times 0.36 \times 0.20 \text{ mm}$
$V = 1166.6 (13) \text{ Å}^3$	

Data collection

Rigaku/MSC Mercury CCD diffractometer	5309 independent reflections
Radiation source: fine-focus sealed tube	4314 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
Detector resolution: 14.62 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 113(2) K	$\theta_{\min} = 3.3^{\circ}$
ω scans	$h = -7 \rightarrow 7$
Absorption correction: none	$k = -15 \rightarrow 9$
9547 measured reflections	$l = -18 \rightarrow 24$

Refinement

Refinement on F^2

Least-squares matrix: full

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0286P)^2 + 1.3663P]$ where $P = (F_o^2 + 2F_c^2)/3$
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.059 & (\Delta/\sigma)_{max} < 0.001 \\ wR(F^2) &= 0.118 & \Delta\rho_{max} = 0.33 \text{ e } \text{\AA}^{-3} \\ S &= 1.10 & \Delta\rho_{min} = -0.32 \text{ e } \text{\AA}^{-3} \\ 5309 \text{ reflections} & Extinction correction: none} \\ 311 \text{ parameters} \\ Primary atom site location: structure-invariant direct methods} \\ \text{Secondary atom site location: difference Fourier map} \\ \text{Hydrogen site location: inferred from neighbouring} \\ \text{sites} \end{split}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.0618 (4)	0.4642 (2)	0.17088 (13)	0.0190 (5)
S1	-0.17984 (11)	0.37188 (6)	0.16735 (4)	0.02662 (16)
N1	0.1016 (3)	0.50531 (18)	0.10978 (11)	0.0197 (4)
H1	-0.010 (5)	0.480 (3)	0.0741 (17)	0.032 (8)*
C2	0.2483 (4)	0.4715 (2)	0.29593 (13)	0.0199 (5)
01	0.1185 (3)	0.39231 (16)	0.30699 (10)	0.0307 (4)
N2	0.2299 (4)	0.50592 (18)	0.23032 (11)	0.0199 (4)
H2	0.339 (5)	0.555 (3)	0.2231 (16)	0.029 (8)*
C3	0.2906 (4)	0.5791 (2)	0.09625 (13)	0.0177 (5)
N3	0.4638 (3)	0.62528 (18)	0.15060 (11)	0.0214 (4)
C4	0.6480 (4)	0.6896 (2)	0.13348 (14)	0.0228 (5)
H4A	0.7752	0.7240	0.1706	0.027*
C5	0.6579 (4)	0.7071 (2)	0.06343 (14)	0.0231 (5)
H5A	0.7910	0.7504	0.0509	0.028*
C6	0.4640 (4)	0.6585 (2)	0.01227 (13)	0.0221 (5)
H6A	0.4640	0.6714	-0.0359	0.026*
N4	0.2768 (3)	0.59406 (18)	0.02747 (11)	0.0206 (4)
C7	0.4417 (4)	0.5426 (2)	0.35636 (13)	0.0217 (5)
C8	0.6106 (5)	0.6306 (2)	0.33193 (15)	0.0302 (6)
H8A	0.6919	0.5865	0.2884	0.045*
H8B	0.7285	0.6716	0.3736	0.045*
H8C	0.5197	0.6902	0.3181	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C9	0.3076 (5)	0.6119 (3)	0.42255 (15)	0.0338 (6)
H9A	0.4220	0.6566	0.4644	0.051*
H9B	0.2020	0.5552	0.4390	0.051*
Н9С	0.2130	0.6683	0.4066	0.051*
C10	0.5839 (5)	0.4511 (3)	0.37960 (17)	0.0340 (6)
H10A	0.6701	0.4078	0.3370	0.051*
H10B	0.4748	0.3938	0.3944	0.051*
H10C	0.6976	0.4932	0.4223	0.051*
C11	0.2873 (4)	-0.0628 (2)	0.32001 (13)	0.0194 (5)
S2	0.05219 (11)	-0.15886 (6)	0.31716 (3)	0.02635 (16)
N5	0.4319 (3)	-0.01896 (18)	0.38563 (11)	0.0200 (4)
Н5	0.386 (5)	-0.041 (2)	0.4230 (16)	0.021 (7)*
C12	0.2599 (4)	-0.0515 (2)	0.18742 (13)	0.0187 (5)
02	0.1185 (3)	-0.13758 (16)	0.15963 (10)	0.0265 (4)
N6	0.3540 (4)	-0.01990 (19)	0.26246 (11)	0.0228 (5)
Н6	0.470 (6)	0.037 (3)	0.2758 (18)	0.043 (9)*
C13	0.6386 (4)	0.0593 (2)	0.40249 (13)	0.0187 (5)
N7	0.7068 (4)	0.11528 (18)	0.35241 (11)	0.0219 (4)
C14	0.9128 (4)	0.1856 (2)	0.37013 (14)	0.0238 (5)
H14A	0.9672	0.2270	0.3360	0.029*
C15	1.0473 (4)	0.1998 (2)	0.43597 (14)	0.0243 (5)
H15A	1.1957	0.2478	0.4474	0.029*
C16	0.9569 (4)	0.1409 (2)	0.48524 (14)	0.0232 (5)
H16A	1.0452	0.1504	0.5317	0.028*
N8	0.7501 (3)	0.07114 (18)	0.46991 (11)	0.0210 (4)
C17	0.3594 (4)	0.0349 (2)	0.14560 (13)	0.0198 (5)
C18	0.2489 (5)	-0.0087 (3)	0.06439 (14)	0.0295 (6)
H18A	0.0753	-0.0106	0.0646	0.044*
H18B	0.2931	-0.0896	0.0398	0.044*
H18C	0.3076	0.0463	0.0368	0.044*
C19	0.6315 (4)	0.0367 (2)	0.14566 (14)	0.0233 (5)
H19A	0.6913	0.0878	0.1157	0.035*
H19B	0.6749	-0.0453	0.1238	0.035*
H19C	0.7021	0.0687	0.1976	0.035*
C20	0.2929 (4)	0.1612 (2)	0.18413 (15)	0.0262 (5)
H20A	0.3465	0.2154	0.1553	0.039*
H20B	0.3696	0.1900	0.2354	0.039*
H20C	0.1198	0.1593	0.1865	0.039*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0185 (11)	0.0198 (11)	0.0187 (12)	0.0015 (9)	-0.0006 (9)	0.0061 (9)
S1	0.0229 (3)	0.0307 (3)	0.0262 (3)	-0.0091 (3)	-0.0049 (2)	0.0124 (3)
N1	0.0176 (10)	0.0227 (10)	0.0183 (10)	-0.0048 (8)	-0.0051 (8)	0.0080 (8)
C2	0.0215 (11)	0.0200 (11)	0.0175 (11)	0.0007 (9)	0.0019 (9)	0.0048 (9)
01	0.0358 (10)	0.0309 (10)	0.0266 (10)	-0.0112 (8)	-0.0034 (8)	0.0151 (8)
N2	0.0199 (10)	0.0208 (10)	0.0191 (10)	-0.0050 (8)	-0.0024 (8)	0.0084 (8)

C3	0.0166 (10)	0.0170 (11)	0.0185 (11)	-0.0009 (9)	-0.0024 (9)	0.0048 (9)
N3	0.0214 (10)	0.0226 (10)	0.0195 (10)	-0.0044 (8)	-0.0051 (8)	0.0079 (8)
C4	0.0200 (11)	0.0226 (12)	0.0247 (13)	-0.0030 (9)	-0.0041 (10)	0.0074 (10)
C5	0.0202 (12)	0.0233 (12)	0.0250 (13)	-0.0056 (10)	-0.0023 (10)	0.0082 (10)
C6	0.0254 (12)	0.0240 (12)	0.0168 (12)	-0.0017 (10)	-0.0010 (9)	0.0076 (10)
N4	0.0204 (10)	0.0211 (10)	0.0196 (10)	-0.0024 (8)	-0.0018 (8)	0.0064 (8)
C7	0.0204 (11)	0.0259 (12)	0.0192 (12)	-0.0004 (10)	-0.0016 (9)	0.0081 (10)
C8	0.0297 (13)	0.0345 (15)	0.0257 (14)	-0.0107 (11)	-0.0079 (11)	0.0128 (12)
C9	0.0361 (15)	0.0399 (16)	0.0205 (13)	0.0007 (12)	-0.0014 (11)	0.0023 (12)
C10	0.0252 (13)	0.0451 (17)	0.0395 (17)	0.0043 (12)	-0.0023 (12)	0.0249 (14)
C11	0.0205 (11)	0.0211 (11)	0.0162 (11)	-0.0020 (9)	-0.0018 (9)	0.0063 (9)
S2	0.0259 (3)	0.0327 (3)	0.0196 (3)	-0.0122 (3)	-0.0041 (2)	0.0112 (3)
N5	0.0212 (10)	0.0236 (10)	0.0163 (10)	-0.0053 (8)	-0.0017 (8)	0.0098 (8)
C12	0.0164 (11)	0.0247 (12)	0.0148 (11)	0.0019 (9)	0.0015 (9)	0.0057 (9)
O2	0.0268 (9)	0.0295 (10)	0.0202 (9)	-0.0101 (8)	-0.0032 (7)	0.0065 (7)
N6	0.0239 (11)	0.0258 (11)	0.0184 (10)	-0.0089 (9)	-0.0041 (8)	0.0101 (9)
C13	0.0204 (11)	0.0189 (11)	0.0159 (11)	-0.0014 (9)	-0.0002 (9)	0.0048 (9)
N7	0.0240 (10)	0.0233 (10)	0.0182 (10)	-0.0054 (8)	-0.0015 (8)	0.0084 (8)
C14	0.0269 (12)	0.0230 (12)	0.0215 (12)	-0.0029 (10)	0.0026 (10)	0.0077 (10)
C15	0.0231 (12)	0.0237 (12)	0.0238 (13)	-0.0065 (10)	0.0004 (10)	0.0062 (10)
C16	0.0236 (12)	0.0230 (12)	0.0205 (12)	-0.0018 (10)	-0.0021 (9)	0.0040 (10)
N8	0.0209 (10)	0.0236 (10)	0.0178 (10)	-0.0011 (8)	-0.0013 (8)	0.0064 (8)
C17	0.0156 (11)	0.0269 (12)	0.0186 (12)	-0.0002 (9)	-0.0008 (9)	0.0105 (10)
C18	0.0251 (13)	0.0475 (16)	0.0176 (12)	-0.0026 (12)	-0.0007 (10)	0.0143 (12)
C19	0.0187 (11)	0.0300 (13)	0.0226 (13)	0.0019 (10)	0.0014 (9)	0.0102 (10)
C20	0.0248 (12)	0.0291 (13)	0.0291 (14)	0.0033 (10)	0.0041 (10)	0.0148 (11)

Geometric parameters (Å, °)

C1—N2	1.371 (3)	C11—N6	1.362 (3)
C1—N1	1.376 (3)	C11—N5	1.377 (3)
C1—S1	1.659 (2)	C11—S2	1.659 (2)
N1—C3	1.397 (3)	N5—C13	1.390 (3)
N1—H1	0.86 (3)	N5—H5	0.85 (3)
C2—O1	1.206 (3)	C12—O2	1.204 (3)
C2—N2	1.392 (3)	C12—N6	1.402 (3)
C2—C7	1.532 (3)	C12—C17	1.531 (3)
N2—H2	0.85 (3)	N6—H6	0.86 (3)
C3—N3	1.334 (3)	C13—N7	1.338 (3)
C3—N4	1.339 (3)	C13—N8	1.341 (3)
N3—C4	1.340 (3)	N7—C14	1.340 (3)
C4—C5	1.378 (3)	C14—C15	1.371 (4)
C4—H4A	0.9500	C14—H14A	0.9500
C5—C6	1.385 (3)	C15—C16	1.388 (3)
С5—Н5А	0.9500	C15—H15A	0.9500
C6—N4	1.338 (3)	C16—N8	1.340 (3)
C6—H6A	0.9500	C16—H16A	0.9500
С7—С8	1.527 (3)	C17—C20	1.525 (4)
C7—C10	1.531 (4)	C17—C18	1.531 (3)

С7—С9	1.531 (4)	C17—C19	1.537 (3)
C8—H8A	0.9800	C18—H18A	0.9800
C8—H8B	0.9800	C18—H18B	0.9800
C8—H8C	0.9800	C18—H18C	0.9800
С9—Н9А	0.9800	С19—Н19А	0.9800
С9—Н9В	0.9800	С19—Н19В	0.9800
С9—Н9С	0.9800	С19—Н19С	0.9800
C10—H10A	0.9800	C20—H20A	0.9800
C10—H10B	0.9800	C20—H20B	0.9800
C10—H10C	0.9800	С20—Н20С	0.9800
N2—C1—N1	115.3 (2)	N6—C11—N5	114.8 (2)
N2—C1—S1	125.97 (18)	N6—C11—S2	125.95 (18)
N1—C1—S1	118.74 (17)	N5—C11—S2	119.27 (17)
C1—N1—C3	131.0 (2)	C11—N5—C13	130.8 (2)
C1—N1—H1	113.4 (19)	C11—N5—H5	115.6 (18)
C3—N1—H1	115.6 (19)	C13—N5—H5	113.6 (18)
O1—C2—N2	123.3 (2)	O2—C12—N6	123.2 (2)
O1—C2—C7	120.3 (2)	O2—C12—C17	124.5 (2)
N2—C2—C7	116.36 (19)	N6-C12-C17	112.29 (19)
C1—N2—C2	127.9 (2)	C11—N6—C12	129.9 (2)
C1—N2—H2	113.3 (19)	С11—N6—Н6	113 (2)
C2—N2—H2	118.6 (19)	С12—N6—H6	117 (2)
N3—C3—N4	126.9 (2)	N7—C13—N8	126.4 (2)
N3—C3—N1	118.6 (2)	N7—C13—N5	119.0 (2)
N4—C3—N1	114.45 (19)	N8—C13—N5	114.59 (19)
C3—N3—C4	116.5 (2)	C13—N7—C14	116.5 (2)
N3—C4—C5	121.8 (2)	N7—C14—C15	122.1 (2)
N3—C4—H4A	119.1	N7	119.0
С5—С4—Н4А	119.1	C15—C14—H14A	119.0
C4—C5—C6	116.7 (2)	C14—C15—C16	117.0 (2)
С4—С5—Н5А	121.6	C14—C15—H15A	121.5
С6—С5—Н5А	121.6	C16—C15—H15A	121.5
N4—C6—C5	123.1 (2)	N8—C16—C15	122.7 (2)
N4—C6—H6A	118.4	N8—C16—H16A	118.7
С5—С6—Н6А	118.4	C15—C16—H16A	118.7
C6—N4—C3	114.94 (19)	C16—N8—C13	115.3 (2)
C8—C7—C10	109.6 (2)	C20-C17-C18	109.8 (2)
C8—C7—C9	109.5 (2)	C20-C17-C12	109.4 (2)
С10—С7—С9	110.1 (2)	C18—C17—C12	108.02 (19)
C8—C7—C2	114.9 (2)	C20—C17—C19	109.41 (19)
C10—C7—C2	107.3 (2)	C18—C17—C19	109.7 (2)
C9—C7—C2	105.3 (2)	C12—C17—C19	110.48 (19)
С7—С8—Н8А	109.5	C17—C18—H18A	109.5
С7—С8—Н8В	109.5	C17—C18—H18B	109.5
H8A—C8—H8B	109.5	H18A—C18—H18B	109.5
С7—С8—Н8С	109.5	C17—C18—H18C	109.5
H8A—C8—H8C	109.5	H18A—C18—H18C	109.5
H8B—C8—H8C	109.5	H18B—C18—H18C	109.5
С7—С9—Н9А	109.5	С17—С19—Н19А	109.5

С7—С9—Н9В	109.5	С17—С19—Н19В	109.5
Н9А—С9—Н9В	109.5	H19A—C19—H19B	109.5
С7—С9—Н9С	109.5	С17—С19—Н19С	109.5
Н9А—С9—Н9С	109.5	H19A—C19—H19C	109.5
Н9В—С9—Н9С	109.5	H19B—C19—H19C	109.5
C7—C10—H10A	109.5	C17—C20—H20A	109.5
C7—C10—H10B	109.5	С17—С20—Н20В	109.5
H10A—C10—H10B	109.5	H20A—C20—H20B	109.5
C7—C10—H10C	109.5	C17—C20—H20C	109.5
H10A-C10-H10C	109.5	H20A—C20—H20C	109.5
H10B—C10—H10C	109.5	H20B—C20—H20C	109.5
N2-C1-N1-C3	3.1 (4)	N6-C11-N5-C13	-2.0 (4)
S1—C1—N1—C3	-177.5 (2)	S2-C11-N5-C13	178.7 (2)
N1—C1—N2—C2	-173.5 (2)	N5-C11-N6-C12	174.7 (2)
S1—C1—N2—C2	7.1 (4)	S2-C11-N6-C12	-6.0 (4)
O1—C2—N2—C1	4.1 (4)	O2-C12-N6-C11	-10.9 (4)
C7—C2—N2—C1	-174.2 (2)	C17—C12—N6—C11	169.7 (2)
C1—N1—C3—N3	-3.5 (4)	C11—N5—C13—N7	8.3 (4)
C1—N1—C3—N4	175.7 (2)	C11—N5—C13—N8	-172.2 (2)
N4—C3—N3—C4	-2.9 (4)	N8—C13—N7—C14	3.4 (4)
N1—C3—N3—C4	176.2 (2)	N5-C13-N7-C14	-177.2 (2)
C3—N3—C4—C5	0.1 (4)	C13—N7—C14—C15	0.0 (4)
N3—C4—C5—C6	2.1 (4)	N7-C14-C15-C16	-2.1 (4)
C4—C5—C6—N4	-2.0 (4)	C14-C15-C16-N8	1.1 (4)
C5—C6—N4—C3	-0.4 (4)	C15-C16-N8-C13	1.8 (4)
N3—C3—N4—C6	3.0 (4)	N7-C13-N8-C16	-4.2 (4)
N1-C3-N4-C6	-176.1 (2)	N5-C13-N8-C16	176.3 (2)
O1—C2—C7—C8	173.6 (2)	O2-C12-C17-C20	119.2 (3)
N2—C2—C7—C8	-8.0 (3)	N6-C12-C17-C20	-61.4 (3)
O1—C2—C7—C10	51.5 (3)	O2-C12-C17-C18	-0.3 (3)
N2-C2-C7-C10	-130.1 (2)	N6-C12-C17-C18	179.1 (2)
O1—C2—C7—C9	-65.8 (3)	O2—C12—C17—C19	-120.3 (3)
N2-C2-C7-C9	112.6 (2)	N6-C12-C17-C19	59.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1…N4 ⁱ	0.86 (3)	2.27 (3)	3.133 (3)	174 (3)
N2—H2…N3	0.85 (3)	1.90 (3)	2.642 (3)	144 (3)
N5—H5····N8 ⁱⁱ	0.85 (3)	2.28 (3)	3.122 (3)	171 (2)
N6—H6…N7	0.86 (3)	1.88 (3)	2.632 (3)	144 (3)
Symmetry order: (i) $-\mathbf{x} - \mathbf{y} + 1 - \mathbf{z}$; (ii) $-\mathbf{x} + 1$	l1			

Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1.

Fig. 2